If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49t^2-80t-23=0
a = 49; b = -80; c = -23;
Δ = b2-4ac
Δ = -802-4·49·(-23)
Δ = 10908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10908}=\sqrt{36*303}=\sqrt{36}*\sqrt{303}=6\sqrt{303}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-6\sqrt{303}}{2*49}=\frac{80-6\sqrt{303}}{98} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+6\sqrt{303}}{2*49}=\frac{80+6\sqrt{303}}{98} $
| 3x+10=30 | | 23=2/5x+5 | | −6+4r=2(r−4)-6+4r=2(r-4) | | 2(x+4)+3x=9-(2x-4) | | 7x-32=5x-27=9x-8=180 | | 9.6=-1.5h | | 4.9t^2-8t-2.3=0 | | 4=5x=-26 | | 2(x=4 | | 2.3q=-4.6 | | -10=-3(x+6) | | (x+1)(x+6)=(x+4)² | | 10y+2=120 | | 3x-15+2x-30=360 | | 22/h=8/14 | | f−6/5=0 | | 3.5(x-3.2)=10.5 | | F(x)=x2-2-2x | | -2.4=a+4.1 | | u-2=6.8 | | 30x+70=250 | | 44=d+29 | | 1/4(4x+13)=31 | | C=2.6k+5 | | (x)14+8x=30 | | 1/2x+14=2.5x-4 | | 24+2j=168 | | 200+15x=305 | | 4y−2y=4 | | b+3=7.4 | | 6.1=s/5 | | xx7=90 |